Part Number Hot Search : 
N3053 0592M BAS16W HD74C V47ZS7 93C46A TLP561J 133AX
Product Description
Full Text Search
 

To Download TSH73CDT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/25 n 3v, 5v, 5v specifications n 3db-bandwidth : 90mhz n gain-bandwidth product : 70mhz n slew-rate : 100v/ m s n output current : up to 55ma n input single supply voltage n output rail to rail n specified for 150 w load n low distortion, thd : 0.1% n sot23-5, tssop and so packages description tsh7x serie offers single, dual, triple and quad operational amplifiers featuring high video perfor- mances with large bandwidth, low distortion and excellent supply voltage rejection. running at single supply voltage from 3v to 12v, amplifiers feature large output voltage swing and high output current capability to drive standard 150 w loads. low operating voltage makes tsh7x amplifiers ideal for use on portable equipments. the tsh71, tsh73 and tsh75 also feature some standby input, each of which allows the op amp to be put into a standby mode with low power con- sumption and high output impedance.the function allows power saving or signals switching/multi- plexing for high speed applications and video ap- plications. for board space and weight saving, tsh7x series is proposed in sot23-5, tssop and so packag- es. application n video buffers n a/d converters driver n hifi applications pin connections (top view) 1 2 3 5 4 vcc - vcc + + - non-inv. in. inv. in. tsh70 : sot23-5/so8 vcc - vcc + 1 2 3 5 4 8 7 6 nc nc standby non inverting input inverting input output tsh71 : so8/tssop8 + _ vcc - vcc + 1 2 3 5 4 8 7 6 non inverting input1 inverting input1 output2 + _ output1 non inverting input2 inverting input2 + _ tsh72 : so8/tssop8 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input1 inverting input1 output3 output1 non inverting input3 inverting input3 5 6 7 8 10 9 + _ + _ + _ output2 non inverting input2 inverting input2 standby1 standby2 standby3 tsh73 : so14/tssop14 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 8 10 9 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 tsh74 : so14/tssop14 vcc + vcc - 1 2 3 13 4 16 15 14 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 10 12 11 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 8 9 standby standby tsh75 : so16/tssop16 output vcc - vcc + 1 2 3 5 4 8 7 6 nc nc output + _ nc inv. in. non-inv. in. 1 2 3 5 4 vcc - vcc + + - non-inv. in. inv. in. tsh70 : sot23-5/so8 vcc - vcc + 1 2 3 5 4 8 7 6 nc nc standby non inverting input inverting input output tsh71 : so8/tssop8 + _ vcc - vcc + 1 2 3 5 4 8 7 6 non inverting input1 inverting input1 output2 + _ output1 non inverting input2 inverting input2 + _ tsh72 : so8/tssop8 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input1 inverting input1 output3 output1 non inverting input3 inverting input3 5 6 7 8 10 9 + _ + _ + _ output2 non inverting input2 inverting input2 standby1 standby2 standby3 tsh73 : so14/tssop14 vcc + vcc - 1 2 3 11 4 14 13 12 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 8 10 9 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 tsh74 : so14/tssop14 vcc + vcc - 1 2 3 13 4 16 15 14 non inverting input2 inverting input2 output4 output2 non inverting input4 inverting input4 5 6 7 10 12 11 + _ + _ + _ output3 non inverting input3 inverting input3 + _ output1 non inverting input1 inverting input1 8 9 standby standby tsh75 : so16/tssop16 output vcc - vcc + 1 2 3 5 4 8 7 6 nc nc output + _ nc inv. in. non-inv. in. tsh70,71,72,73,74,75 wide band, low power operational amplifier with standby function august 2002
tsh70, 71, 72, 73, 74, 75 2/25 absolute maximum ratings operating conditions order codes c = temperature range d = small outline package (so) - also available in tape & reel (dt) p = thin shrink small outline package (tssop) - only available in tape & reel (pt) l = tiny package (sot23-5) - only available in tape & reel (lt) symbol parameter value unit v cc supply voltage 1) 14 v v id differential input voltage 2) 2v v i input voltage 3) 6v t oper operating free air temperature range 0 to +70 c t stg storage temperature -65 to +150 c t j maximum junction temperature 150 c r thjc thermal resistance junction to case 4) sot23-5 so8 so14 so16 tssopo8 tssop14 tssop16 80 28 22 35 37 32 35 c/w r thja thermal resistance junction to ambiant area sot23-5 so8 so14 so16 tssopo8 tssop14 tssop16 250 157 125 11 0 130 11 0 11 0 c/w esd humanbodymodel 2 kv 1. all voltages values, except differential voltage are with respect to network ground terminal 2. differential voltages are non-inverting input terminal with respect to the inverting terminal 3. the magnitude of input and output must never exceed v cc +0.3v 4. short-circuits can cause excessive heating symbol parameter value unit v cc supply voltage 3 to 12 v v ic common mode input voltage range v cc - to (v cc + -1.1) v standby (v cc - ) to (v cc + ) v type temperature package marking tsh70clt 0c to 70c sot23-5 k301 tsh70cd so8 70c tsh70cdt so8 tape 70c tsh71cd so8 71c tsh71cdt so8 tape 71c tsh71cpt tssop8 71c tsh72cd so8 72c tsh72cdt so8 tape 72c tsh72cpt tssop8 72c tsh73cd so14 73c TSH73CDT so14 tape 73c tsh73cpt tssop14 73c tsh74cd so14 74c tsh74cdt so14 tape 74c tsh74cpt tssop14 74c tsh75cd so16 75c tsh75cdt so16 tape 75c tsh75cpt tssop16 75c
tsh70, 71, 72, 73, 74, 75 3/25 electrical characteristics v cc + = 3v, v cc - = gnd, v ic = 1.5v, t amb = 25 c (unless otherwise specified) symbol parameter testcondition min. typ. max. unit |v io | input offset voltage t amb = 25c t min. < t amb < t max. 1.2 10 12 mv d v io input offset voltage drift vs. temperature t min. < t amb < t max. 4 m v/c i io input offset current t amb = 25c t min. < t amb < t max. 0.1 3.5 5 m a i ib input bias current t amb = 25c t min. < t amb < t max. 615 20 m a c in input capacitance 0.2 pf i cc supply current per operator t amb = 25c t min. < t amb < t max. 7.2 9.8 11 ma cmr common mode rejection ratio ( d vic/ d vio) +0.1 tsh70, 71, 72, 73, 74, 75 4/25 v ol low level output voltage t amb =25c r l = 150 w to gnd r l = 600 w to gnd r l = 2k w to gnd r l = 10k w to gnd r l = 150 w to 1.5v r l = 600 w to 1.5v r l = 2k w to 1.5v r l = 10k w to 1.5v t min. < t amb < t max. r l = 150 w to gnd r l = 150 w to 1.5v 46 52 53 54 140 90 68 57 150 300 200 350 mv gbp gain bandwidth product f=10mhz a vcl =+11 a vcl =-10 65 55 mhz bw bandwidth @-3db a vcl =+1 r l =150 w to 1.5v 87 mhz sr slew rate a vcl =+2 r l =150 w // c l to 1.5v c l = 5pf c l = 30pf 45 80 85 v/ m s f m phase margin r l =150 w // 30pf to 1.5v 40 en equivalent input noise voltage f=100khz 11 nv/ ? hz thd total harmonic distortion a vcl =+2, f=4mhz r l =150 w // 30pf to 1.5v v out =1vpp v out =2vpp -61 -54 db im2 second order intermodulation product a vcl =+2, v out =2vpp r l =150 w to 1.5v fin1=180khz, fin2=280khz spurious measurement @100khz -76 dbc im3 third order inter modulation product a vcl =+2, v out =2vpp r l =150 w to 1.5v fin1=180khz, fin2=280khz spurious measurement @400khz -68 dbc d g differential gain a vcl =+2, r l =150 w to 1.5v f=4.5mhz, v out =2vpp 0.5 % df differential phase a vcl =+2, r l =150 w to 1.5v f=4.5mhz, v out =2vpp 0.5 gf gain flatness f=dc to 6mhz, a vcl =+2 0.2 db vo1/vo2 channel separation f=1mhz to 10mhz 65 db symbol parameter testcondition min. typ. max. unit
tsh70, 71, 72, 73, 74, 75 5/25 electrical characteristics v cc + = 5v, v cc - = gnd, v ic = 2.5v, t amb = 25 c (unless otherwise specified) symbol parameter testcondition min. typ. max. unit |v io | input offset voltage t amb = 25c t min. < t amb < t max. 1.1 10 12 mv d v io input offset voltage drift vs temperature t min. < t amb < t max. 3 m v/c i io input offset current t amb = 25c t min. < t amb < t max. 0.1 3.5 5 m a i ib input bias current t amb = 25c t min. < t amb < t max. 615 20 m a c in input capacitance 0.3 pf i cc supply current per operator t amb = 25c t min. < t amb < t max. 8.2 10.5 11.5 ma cmr common mode rejection ratio ( d vic/ d vio) +0.1 tsh70, 71, 72, 73, 74, 75 6/25 v ol low level output voltage t amb =25c r l = 150 w to gnd r l = 600 w to gnd r l = 2k w to gnd r l = 10k w to gnd r l = 150 w to 2.5v r l = 600 w to 2.5v r l = 2k w to 2.5v r l = 10k w to 2.5v t min. < t amb < t max. r l = 150 w to gnd r l = 150 w to 2.5v 48 54 55 56 220 105 76 61 150 400 200 450 mv gbp gain bandwidth product f=10mhz a vcl =+11 a vcl =-10 65 55 mhz bw bandwidth @-3db a vcl =+1 r l =150 w to 2.5v 87 mhz sr slew rate a vcl =+2 r l =150 w // c l to 2.5v c l = 5pf c l = 30pf 60 104 105 v/ m s f m phase margin r l =150 w // 30pf to 2.5v 40 en equivalent input noise voltage f=100khz 11 nv/ ? hz thd total harmonic distortion a vcl =+2, f=4mhz r l =150 w // 30pf to 2.5v v out =1vpp v out =2vpp -61 -54 db im2 second order intermodulation product a vcl =+2, v out =2vpp r l =150 w to 2.5v fin1=180khz, fin2=280khz spurious measurement @100khz -76 dbc im3 third order inter modulation product a vcl =+2, v out =2vpp r l =150 w to 2.5v fin1=180khz, fin2=280khz spurious measurement @400khz -68 dbc d g differential gain a vcl =+2, r l =150 w to 2.5v f=4.5mhz, v out =2vpp 0.5 % df differential phase a vcl =+2, r l =150 w to 2.5v f=4.5mhz, v out =2vpp 0.5 gf gain flatness f=dc to 6mhz, a vcl =+2 0.2 db vo1/vo2 channel separation f=1mhz to 10mhz 65 db symbol parameter testcondition min. typ. max. unit
tsh70, 71, 72, 73, 74, 75 7/25 electrical characteristics v cc + = 5v, v cc - = -5v, v ic = gnd, t amb = 25 c (unless otherwise specified) symbol parameter test condition min. typ. max. unit |v io | input offset voltage t amb = 25c t min. < t amb < t max. 0.8 10 12 mv d v io input offset voltage drift vs temperature t min. < t amb < t max. 2 m v/c i io input offset current t amb = 25c t min. < t amb < t max. 0.1 3.5 5 m a i ib input bias current t amb = 25c t min. < t amb < t max. 615 20 m a c in input capacitance 0.7 pf i cc supply current per operator t amb = 25c t min. < t amb < t max. 9.8 12.3 13.4 ma cmr common mode rejection ratio ( d vic/ d vio) -4.9 tsh70, 71, 72, 73, 74, 75 8/25 sr slew rate a vcl =+2 r l =150 w // c l to gnd c l = 5pf c l = 30pf 68 11 7 11 8 v/ m s f m phase margin r l =150 w to gnd 40 en equivalent input noise voltage f=100khz 11 nv/ ? hz thd total harmonic distortion a vcl =+2, f=4mhz r l =150 w // 30pf to gnd v out =1vpp v out =2vpp -61 -54 db im2 second order intermodulation product a vcl =+2, v out =2vpp r l =150 w to gnd fin1=180khz, fin2=280khz spurious measurement @100khz -76 dbc im3 third order intermodulation product a vcl =+2, v out =2vpp r l =150 w to gnd fin1=180khz, fin2=280khz spurious measurement @400khz -68 dbc d g differential gain a vcl =+2, r l =150 w to gnd f=4.5mhz, v out =2vpp 0.5 % df differential phase a vcl =+2, r l =150 w to gnd f=4.5mhz, v out =2vpp 0.5 gf gain flatness f=dc to 6mhz, a vcl =+2 0.2 db vo1/vo2 channel separation f=1mhz to 10mhz 65 db symbol parameter test condition min. typ. max. unit
tsh70, 71, 72, 73, 74, 75 9/25 standby mode v cc + , v cc - , t amb = 25c (unless otherwise specified) symbol parameter test condition min. typ. max. unit vl ow standby low level v cc - (v cc - +0.8) v v high standby high level (v cc - +2) (v cc + ) v i cc sby current consumption per operator when standby is active pin 8 (tsh71) to v cc - pin 1,2 or 3 (tsh73) to v cc - pin 8 (tsh75) to v cc + pin 9 (tsh75) to v cc - 20 55 m a z out output impedance (rout//cout) r out c out 10 17 m w pf t on time from standby mode to active mode 2 m s t off time from active mode to standby mode down to i cc sby = 10 m a 10 m s tsh71 standby control pin 8 (sby ) operator status v low standby v high active tsh73 standby control operator status pin 1 (sby op1) pin 2 (sby op2) pin 3 (sby op3) op1 op1 op3 v low x x standby x x v high x x active x x x v low x x standby x x v high x active x xx v low x x standby xx v high x x active tsh75 standby control operator status pin 8 (sby op2) pin 9 (sby op3) op1 op2 op3 op4 v high v low active standby standby active v high v high active standby active active v low v low active active standby active v low v high active active active active
tsh70, 71, 72, 73, 74, 75 10/25 closed loop gain and phase vs. frequency gain=+2, vcc= 1.5v, rl=150 w , t amb = 25 c closed loop gain and phase vs. frequency gain=-10, vcc= 1.5v, rl=150 w , t amb = 25 c large signal measurement - positive slew rate gain=2,vcc=1.5v,zl=150 w //5.6pf,vin=400mvpk overshoot function of output capacitance gain=+2, vcc= 1.5v, t amb = 25 c closed loop gain and phase vs. frequency gain=+11, vcc= 1.5v, rl=150 w , t amb = 25 c large signal measurement - negative slew rate gain=2,vcc=1.5v,zl=150 w //5.6pf,vin=400mvpk 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -20 -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gain phase 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -100 -50 0 50 100 150 200 gain phase phase () 0 102030405060 time (ns) -1 -0.5 0 0.5 1 vout (v) 1e+6 1e+7 1e+8 1e+9 frequency (hz) -5 0 5 10 gain (db) 150 w 150 w //10pf 150 w //33pf 150 w //22pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase () gain phase 0102030 40 50 time (ns) -1 -0.5 0 0.5 1 vout (v)
tsh70, 71, 72, 73, 74, 75 11/25 small signal measurement - rise time gain=2,vcc=1.5v, zl=150 w ,vin=400mvpk channel separation (xtalk) vs frequency measurement configuration : xtalk=20log(v0/v1) equivalent noise voltage gain=100, vcc=1.5v, no load small signal measurement - fall time gain=2,vcc=1.5v, zl=150 w ,vin=400mvpk channel separation (xtalk) vs frequency gain=+11, vcc= 1.5v, zl=150 w //27pf maximum output swing gain=11, vcc=5v, rl=150 w 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 100 w 1k w 100 w 1k w + - 49.9 w vo 150 w + - 49.9 w v1 150 w vin + - 0.1 1 10 100 1000 frequency (khz) 5 10 15 20 25 30 en (nv/ ? hz) _ + 100 10k 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 1e+4 1e+5 1e+6 1e+7 frequency (hz) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1output 2/1output 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2.0e-1 time (ms) -5 -4 -3 -2 -1 0 1 2 3 4 5 vin, vout (v) vout vin
tsh70, 71, 72, 73, 74, 75 12/25 standby mode - ton, toff vcc= 1.5v, open loop group delay gain=2, vcc= 1.5v, zl=150 w //27pf, t amb = 25 c third order intermodulation gain=2, vcc= 1.5v, zl=150 w //27pf, t amb = 25 c 0 2e-6 4e-6 6e-6 8e-6 1e-5 time (s) -2 -1 0 1 2 vin, vout (v) vout ton toff standby vin intermodulation products the ifr2026 synthesizer generates a two tones signal (f1=180khz, f2=280khz); each tone having the same amplitude level. the hp3585 spectrum analyzer measures the intermodulation products function of the output voltage. the generator and the spectrum ana- lyzer are phase locked for precision consider- ations. group delay gain 5.87ns 01234 vout peak(v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 80khz 380khz 640khz 740khz
tsh70, 71, 72, 73, 74, 75 13/25 closed loop gain and phase vs. frequency gain=+2, vcc= 2.5v, rl=150 w , t amb = 25 c closed loop gain and phase vs. frequency gain=-10, vcc= 2.5v, rl=150 w , t amb = 25 c large signal measurement - positive slew rate gain=2,vcc=2.5v,zl=150 w //5.6pf,vin=400mvpk overshoot function of output capacitance gain=+2, vcc= 2.5v, t amb = 25 c closed loop gain and phase vs. frequency gain=+11, vcc= 2.5v, rl=150 w , t amb = 25 c large signal measurement - negative slew rate gain=2,vcc=2.5v,zl=150 w //5.6pf,vin=400mvpk 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gain phase 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -100 -50 0 50 100 150 200 phase () gain phase 0 1020304050607080 time (ns) -3 -2 -1 0 1 2 3 vout (v) 1e+6 1e+7 1e+8 1e+9 frequency (hz) -5 0 5 10 gain (db) 150 w 150 w //33pf 150 w //22pf 150 w //10pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase () gain phase 0 10203040506070 time (ns) -3 -2 -1 0 1 2 3 vout (v)
tsh70, 71, 72, 73, 74, 75 14/25 small signal measurement - rise time gain=2,vcc=2.5v,zl=150 w ,vin=400mvpk channel separation (xtalk) vs frequency measurement configuration : xtalk=20log(v0/v1) equivalent noise voltage gain=100, vcc=2.5v, no load small signal measurement - fall time gain=2,vcc=2.5v,zl=150 w ,vin=400mvpk channel separation (xtalk) vs frequency gain=+11, vcc= 2.5v, zl=150 w //27pf maximum output swing gain=11, vcc=2.5v, rl=150 w 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 100 w 1k w 100 w 1k w + - 49.9 w vo 150 w + - 49.9 w v1 150 w vin + - 0.1 1 10 100 1000 frequency (khz) 5 10 15 20 25 30 en (nv/ ? hz) _ + 100 10k 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin vout (v) vin vout 1e+4 1e+5 1e+6 1e+7 frequency (hz) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1output 2/1output 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2.0e-1 time (ms) -3 -2 -1 0 1 2 3 vin, vout (v) vout vin
tsh70, 71, 72, 73, 74, 75 15/25 standby mode - ton, toff vcc= 2.5v, open loop group delay gain=2, vcc= 2.5v, zl=150 w //27pf , t amb = 25 c third order intermodulation gain=2, vcc= 2.5v, zl=150 w //27pf , t amb = 25 c 0 2e-64e-66e-68e-61e-5 time (s) -3 -2 -1 0 1 2 3 vin, vout (v) vout ton toff standby vin intermodulation products the ifr2026 synthesizer generates a two tones signal (f1=180khz, f2=280khz); each tone having the same amplitude level. the hp3585 spectrum analyzer measures the intermodulation products function of the output voltage. the generator and the spectrum ana- lyzer are phase locked for precision consider- ations. group delay gain 5.32ns 0123 4 vout peak(v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 740khz 380khz 640khz 80khz
tsh70, 71, 72, 73, 74, 75 16/25 closed loop gain and phase vs. frequency gain=+2, vcc= 5v, rl=150 w , t amb = 25 c closed loop gain and phase vs. frequency gain=-10, vcc= 5v, rl=150 w , t amb = 25 c large signal measurement - positive slew rate gain=2,vcc=5v,zl=150 w //5.6pf,vin=400mvpk overshoot function of output capacitance gain=+2, vcc= 5v, t amb = 25 c closed loop gain and phase vs. frequency gain=+11, vcc= 5v, rl=150 w , t amb = 25 c large signal measurement - negative slew rate gain=2,vcc=5v,zl=150 w //5.6pf,vin=400mvpk 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -15 -10 -5 0 5 10 gain (db) -200 -100 0 100 200 phase () gain phase 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -50 0 50 100 150 200 phase () gain phase 0 20406080100 time (ns) -5 -4 -3 -2 -1 0 1 2 3 4 5 vout (v) 1e+6 1e+7 1e+8 1e+9 frequency (hz) -5 0 5 10 gain (db) 150 w 150 w //10pf 150 w //33pf 150 w //22pf 1e+4 1e+5 1e+6 1e+7 1e+8 1e+9 frequency (hz) -10 0 10 20 30 gain (db) -150 -100 -50 0 phase () gain phase 0 20406080100 time (ns) -5 -4 -3 -2 -1 0 1 2 3 4 5 vout (v)
tsh70, 71, 72, 73, 74, 75 17/25 small signal measurement - rise time gain=2,vcc=5v,zl=150 w ,vin=400mvpk channel separation (xtalk) vs frequency measurement configuration : xtalk=20log(v0/v1) equivalent noise voltage gain=100, vcc=5v, no load small signal measurement - fall time gain=2,vcc=5v,zl=150 w ,vin=400mvpk channel separation (xtalk) vs frequency gain=+11, vcc= 5v, zl=150 w //27pf maximum output swing gain=11, vcc=5v, rl=150 w 0 102030405060 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout time (ns) 100 w 1k w 100 w 1k w + - 49.9 w vo 150 w + - 49.9 w v1 150 w vin + - 0.1 1 10 100 1000 frequency (khz) 5 10 15 20 25 30 en (nv/ ? hz) _ + 100 10k 0 102030405060 time (ns) -0.06 -0.04 -0.02 0 0.02 0.04 0.06 vin, vout (v) vin vout 1e+4 1e+5 1e+6 1e+7 frequency (hz) -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 xtalk (db) 3/1output 4/1output 2/1output 0.0e+0 5.0e-2 1.0e-1 1.5e-1 2.0e-1 time (ms) -5 -4 -3 -2 -1 0 1 2 3 4 5 vin, vout (v) vout vin
tsh70, 71, 72, 73, 74, 75 18/25 standby mode - ton, toff vcc= 5v, open loop group delay gain=2, vcc= 5v, zl=150 w //27pf , t amb = 25 c third order intermodulation gain=2, vcc= 5v, zl=150 w //27pf , t amb = 25 c 0 2e-6 4e-6 6e-6 8e-6 time (s) -5 0 5 vin, vout (v) vout standby ton toff vin intermodulation products the ifr2026 synthesizer generates a two tones signal (f1=180khz, f2=280khz); each tone having the same amplitude level. the hp3585 spectrum analyzer measures the intermodulation products function of the output voltage. the generator and the spectrum ana- lyzer are phase locked for precision consider- ations. group delay gain 5.1ns 01234 vout peak(v) -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 im3 (dbc) 80khz 380khz 640khz 740khz
tsh70, 71, 72, 73, 74, 75 19/25 testing conditions: layout precautions: to use the tsh7x circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - first of all, the implementation of a proper ground plane in both sides of the pcb is mandatory for high speed circuit applications to provide low in- ductance and low resistance common return. - power supply bypass capacitors (4.7uf and ce- ramic 100pf) should be placed as close as possi- ble to the ic pins in order to improve high frequen- cy bypassing and reduce harmonic distortion. the power supply capacitors must be incorporated for both the negative and the positive pins. - proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. all leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance. - for lower gain application, attention should be paid not to use large feedback resistance (>1k w ) to reduce time constant with parasitic capacitanc- es. - choose component sizes as small as possible (smd). - finally, on output, the load capacitance must be negligible to maintain good stability. you can put a serial resistance the closest to the output pin to minimize its influence. ccir330 video line maximum input level: the input level must not exceed the following val- ues: q negative peak: must be greater than -vcc+400mv. q positive peak value: must be lower than +vcc-400mv. the electrical characteristics show the influence of the load on this parameter. video capabilities: to characterize the differential phase and differ- ential gain a ccir330 video line is used. the video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). the luma gives various amplitudes which define the saturation of the sig- nal. the chrominance gives various phases which define the colour of the signal. differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. they repre- sent the ability to uniformly process the high fre- quency information at all luminance levels. when differential gain is present, colour saturation is not correctly reproduced. the input generator is the rohde & schwarz ccvs. the output measurement is done by the rohde and schwarz vsa. measurement on rohde and schwarz vsa.
tsh70, 71, 72, 73, 74, 75 20/25 video results: precautions on asymmetrical supply operation: the tsh7x can be used either with a dual or a single supply. if a single supply is used, the inputs are biased to the mid-supply voltage (+vcc/2). this bias network must be carefully designed, in order to reject any noise present on the supply rail. as the bias current is 15ua, you must carefully choose the resistance r1 not to introduce an off- set mismatch at the amplifier inputs. r1=10k w will be convenient. c1, c2, c3 are by- pass capacitors from perturbation on vcc as well as for the input and output signals. we choose c1=100nf and c2=c3=100uf. r2, r3 are such that the current through them must be superior to 100 times the bias current. so, we take r2=r3=4.7k w . cin, as cout are chosen to filter the dc signal by the lowpass filters (r1,cin) and (rout, cout). by taking r1=10k w , rl=150 w, and cin=2uf, cout=220uf we provide a cutoff frequency below 10hz. use of the tsh7x in gain=-1 configuration: some precautions have to be added, specially for low power supply application. a feedback capacitance cf should be added for better stability. the table summarizes the impact of the capacitance cf on the phase margin of the circuit. parameter value vcc=+-2.5v value vcc=+-5v unit lum nl 0.1 0.3 % lum nl step 1 100 100 % lum nl step 2 100 99.9 % lum nl step 3 99.9 99.8 % lum nl step 4 99.9 99.9 % lum nl step 5 99.9 99.7 % diff gain pos 0 0 % diff gain neg -0.7 -0.6 % diff gain pp 0.7 0.6 % diff gain step1 -0.5 -0.3 % diff gain step2 -0.7 -0.6 % diff gain step3 -0.3 -0.5 % diff gain step4 -0.1 -0.3 % diff gain step5 -0.4 -0.5 % diff phase pos 0 0.1 deg diff phase neg -0.2 -0.4 deg diff phase pp 0.2 0.5 deg diff phase step1 -0.2 -0.4 deg diff phase step2 -0.1 -0.4 deg diff phase step3 -0.1 -0.3 deg diff phase step4 0 0.1 deg diff phase step5 -0.2 -0.1 deg in r1 vcc+ out r2 r3 c1 c3 c2 cin cout + - cf r5 r4 rl in r1 vcc+ out r2 r3 c1 c3 c2 cin cout + - 1k cf 1k rl
tsh70, 71, 72, 73, 74, 75 21/25 example of a video application : this example shows a possible application of the tsh7x circuit. here, you can multiplex the channels for the different standard pal, ntsc as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a pal encoded signal (lpf1) or a ntsc signal (lpf2). you can multiplex input signals, as the outputs are in high impedance state in standby mode.this enables you, to use a pal filter as the standby mode is active and to use the ntsc filter otherwise. the video application requires 1vpeak at input and output. calculation of components: a decoupling capacitor is provided to cutoff the frequencies below 10hz according i bias.hence ce=10uf, with rb1=10k w . at the output, cout=220uf. the aop1 is in 6db configuration for the adaptation bridge. r1=r2=1k w. v1=2vpk. v2=1vpk for the pal communication, we need a lowpass filtering. the load resistance r4 is function of the output resistance of the filter.v3=v2/a1 where a1 is the attenuation factor of the filter lpf1. to compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier aop2. for example, for an attenuation of 3db, we choose r5=300 w and r6=1k w . we have v4=2vpk and vout=1vpk. the calculation of the parameters r7, c7, r8, c8, r9, r10 will be exactly the same . parameter cf (pf) vcc=!1.5v vcc=!2.5v vcc=!5v unit phase margin 0 28 43 56 deg f-3db 40 39.3 38.3 mhz phase margin 5.6 30 43 56 deg f-3db 40 39.3 38.3 mhz phase margin 22 37 52 67 deg f-3db 37 34 32 mhz phase margin 33 48 65 78 deg f-3db 33.7 30.7 27.6 mhz in ce re rb1 vcc/2 + - vcc/2 + - + - standby standby r1 r2 r3 c3 r4 c4 rb1 r5 r6 r9 r10 rout out aop1 aop2 aop3 v1 v2 v3 v4 a1 vcc/2 vcc/2 cf cf cf cout vcc/2 rl r7 c7 r8 c8 lpf2 a2 pal ntsc lpf1 rb1 vcc/2
tsh70, 71, 72, 73, 74, 75 22/25 package mechanical data 8 pins - plastic micropackage (so) package mechanical data 8 pins - thin shrink small outline package (tssop) dim. millimeters inches min. typ. max. min. typ. max. a 1.75 0.069 a1 0.1 0.25 0.004 0.010 a2 1.65 0.065 a3 0.65 0.85 0.026 0.033 b 0.35 0.48 0.014 0.019 b1 0.19 0.25 0.007 0.010 c 0.25 0.5 0.010 0.020 c1 45 (typ.) d 4.8 5.0 0.189 0.197 e 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 3.81 0.150 f 3.8 4.0 0.150 0.157 l 0.4 1.27 0.016 0.050 m 0.6 0.024 s 8 (max.) dim. millimeters inches min. typ. max. min. typ. max. a 1.20 0.05 a1 0.05 0.15 0.01 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.15 c 0.09 0.20 0.003 0.012 d 2.90 3.00 3.10 0.114 0.118 0.122 e 6.40 0.252 e1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.025 k0 8 0 8 l 0.50 0.60 0.75 0.09 0.0236 0.030 c l 14 8 5 l1 c 0.25mm .010 inch gage plane e1 k l l1 e seating plane a a2 d a1 b 5 8 4 1 pin 1 identification e
tsh70, 71, 72, 73, 74, 75 23/25 package mechanical data 14 pins - plastic micropackage (so) package mechanical data 14 pins - thin shrink small outline package (tssop) dim. millimeters inches min. typ. max. min. typ. max. a 1.75 0.069 a1 0.1 0.2 0.004 0.008 a2 1.6 0.063 b 0.35 0.46 0.014 0.018 b1 0.19 0.25 0.007 0.010 c 0.5 0.020 c1 45 (typ.) d (1) 8.55 8.75 0.336 0.344 e 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 7.62 0.300 f (1) 3.8 4.0 0.150 0.157 g 4.6 5.3 0.181 0.208 l 0.5 1.27 0.020 0.050 m 0.68 0.027 s 8 (max.) note : (1) d and f do not include mold flash or protrusions - mold flash or protrusions shall not exceed 0.15mm (.066 inc) only for data book. d m f 14 1 7 8 b e3 e e lg c c1 a a2 a1 b1 s dim. millimeters inches min. typ. max. min. typ. max. a 1.20 0.05 a1 0.05 0.15 0.01 0.006 a2 0.80 1.00 1.05 0.031 0.039 0.041 b 0.19 0.30 0.007 0.15 c 0.09 0.20 0.003 0.012 d 4.90 5.00 5.10 0.192 0.196 0.20 e 6.40 0.252 e1 4.30 4.40 4.50 0.169 0.173 0.177 e 0.65 0.025 k0 8 0 8 l 0.50 0.60 0.75 0.09 0.0236 0.030 c e1 k l e e b d pin 1 identification 1 7 8 14 seating plane c aaa c 0,25 mm .010 inch gage plane l1 a a2 a1
tsh70, 71, 72, 73, 74, 75 24/25 package mechanical data 16 pins - plastic micropackage (so) package mechanical data 16 pins - thin shrink small outline package (tssop) dim. millimeters inches min. typ. max. min. typ. max. a 1.75 0.069 a1 0.1 0.2 0.004 0.008 a2 1.6 0.063 b 0.35 0.46 0.014 0.018 b1 0.19 0.25 0.007 0.010 c 0.5 0.020 c1 45 (typ.) d 9.8 10 0.386 0.394 e 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 8.89 0.350 f 3.8 4.0 0.150 0.157 g 4.6 5.3 0.181 0.209 l 0.5 1.27 0.020 0.050 m 0.62 0.024 s 8 (max.) dim. millimeters inches min. typ. max. min. typ. max. a 0.90 1.20 1.45 0.035 0.047 0.057 a1 0 0.15 0.006 a2 0.90 1.05 1.30 0.035 0.041 0.051 b 0.35 0.40 0.50 0.014 0.016 0.020 c 0.09 0.15 0.20 0.004 0.006 0.008 d 2.80 2.90 3.00 0.110 0.114 0.118 d1 1.90 0.075 e 0.95 0.037 e 2.60 2.80 3.00 0.102 0.110 0.0118 f 1.50 1.60 1.75 0.059 0.063 0.069 l 0.10 0.5 0.60 0.004 0.014 0.024 c e1 k l e e b d pin 1 identification 1 8 9 16 seating plane c aaa c 0,25 mm .010 inch gage plane l1 a a2 a1
tsh70, 71, 72, 73, 74, 75 25/25 information furnished is believed to be accurate and reliable. however, stmicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result f rom its use. no license is granted by implication or otherwise under any patent or patent rights of stmicroelectronics. specificati ons mentioned in this publication are subject to change without notice. this publication supersedes and replaces all information previously supplied. stmicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of stmicroelectronics. ? the st logo is a registered trademark of stmicroelectronics ? 2002 stmicroelectronics - printed in italy - all rights reserved stmicroelectronics group of companies australia - brazil - canada - china - finland - france - germany - hong kong - india - israel - italy - japan - malaysia malta - morocco - singapore - spain - sweden - switzerland - united kingdom - united states ? http://www.st.com package mechanical data 5 pins - tiny package (sot23) dim. millimeters inches min. typ. max. min. typ. max. a 0.90 1.20 1.45 0.035 0.047 0.057 a1 0 0.15 0.006 a2 0.90 1.05 1.30 0.035 0.041 0.051 b 0.35 0.40 0.50 0.014 0.016 0.020 c 0.09 0.15 0.20 0.004 0.006 0.008 d 2.80 2.90 3.00 0.110 0.114 0.118 d1 1.90 0.075 e 0.95 0.037 e 2.60 2.80 3.00 0.102 0.110 0.0118 f 1.50 1.60 1.75 0.059 0.063 0.069 l 0.10 0.5 0.60 0.004 0.014 0.024 k 0d 10d 0d 10d l c f a2 a a1 b e d d1 e


▲Up To Search▲   

 
Price & Availability of TSH73CDT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X